Positive $H\sp{1/2}$ functions are constants

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are Constants Constant?

The prospect of a time-dependent Higgs vacuum expectation value is examined within the standard model of electroweak interactions. It is shown that the classical equation of motion for the Higgs field admits a solution that is a doubly-periodic function of time. The corresponding Dirac equation for the electron field is equivalent to a second order differential equation with doubly-periodic coe...

متن کامل

Polynomial Constants are Decidable

Constant propagation aims at identifying expressions that always yield a unique constant value at run-time. It is well-known that constant propagation is undecidable for programs working on integers even if guards are ignored as in non-deterministic flow graphs. We show that polynomial constants are decidable in non-deterministic flow graphs. In polynomial constant propagation, assignment state...

متن کامل

Staircase Skew Schur Functions Are Schur P -positive

We prove Stanley’s conjecture that, if δn is the staircase shape, then the skew Schur functions sδn/μ are non-negative sums of Schur P -functions. We prove that the coefficients in this sum count certain fillings of shifted shapes. In particular, for the skew Schur function sδn/δn−2 , we discuss connections with Eulerian numbers and alternating permutations.

متن کامل

PERSPECTIVES Are rate constants constant?

2006;571;502-; originally published online Feb 2, 2006; J. Physiol. Stephen W. Jones Are rate constants constant? This information is current as of March 21, 2006 publication unless article is open access. This version of the article may not be posted on a public website for 12 months after http://jp.physoc.org/cgi/content/full/571/3/502 This is the final published version of this article; it i...

متن کامل

Best Constants for Uncentered Maximal Functions

We precisely evaluate the operator norm of the uncentered Hardy-Littlewood maximal function on Lp(R1). Consequently, we compute the operator norm of the “strong” maximal function on Lp(Rn), and we observe that the operator norm of the uncentered Hardy-Littlewood maximal function over balls on Lp(Rn) grows exponentially as n → ∞. For a locally integrable function f on R, let (Mnf)(x) = sup B x 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1967

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1967-0213576-5